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A two-dimensional linear elastodynamic analysis of crack initiation and fast crack propa- 
gation in a centre-cracked plate, subjected to constant tension is presented. The analysis 
is performed using the previously developed SMF2D code in its generation mode. The 
experimentally measured crack tip motion, as well as the specimen's geometry and its 
material characteristics serve as input to the simulation. The dynamic stress intensity 
factor, the dynamic energy release rate, and the various energy distributions are sub- 
sequently evaluated. Special attention is given to the influence of the energy supplied to 
the body during the fracture process due to the work done by the external tractions. 

1. Introduction 
Preliminary results regarding crack initiation and 
dynamic crack propagation in a centre-cracked 
plate (CCP), using the improved two-dimensional 
finite difference code, the SMF2D code, were 
reported by Perl et al. [1]. Using generation phase 
type simulations, the influence of the initial crack 
length and the initial loading (bluntness) on the 
various dynamic parameters of the problem is 
investigated in this paper. In each case discussed, 
the crack tip motion is specified using experi- 
mental data and the dynamic parameters such as 
the dynamic stress intensity factor, the dynamic 
energy release rate, and the various energy dis- 
tributions are evaluated throughout the simulation. 

In the following sections, after a brief descrip- 
tion of the field equations and the numerical 
scheme, detailed static and dynamic results for 
the CCP specimen are presented and discussed. 
Furthermore, a comprehensive comparison between 
the CCP and the single edge notch specimen 
(SEN), under fixed grip conditions, is performed. 

2. The field equations 
Only a brief description of the field equations and 
the numerical scheme is hereafter given. A detailed 
description of the employed method, the numerical 
approximation as well as the SMF2D code are 
given in [ 1-3 ]. 

The SMF2D code is based on the simultaneous 
employment of two coordinate systems (Fig. 1). 
The stationary coordinate system which is attached 
to the treated body, defining the stationary 
domain Ds, and the moving coordinate system 
which originates at the moving crack tip, defining 
the moving domain Dm. 

Assuming an elastic medium under plane strain 
conditions, the dimensionless displacement field 
U in the stationary domain D s is governed by the 
following equations of motion: 

1 
v)[Uk,m + (1 -- 2v)Ui, kk] = Ui,rr + CUi,r 

2(1 

i ,k  = 1,2 (1) 

Here U was normalized to an arbitrary unit of 
length, H, say for convenience the height of the 
specimen investigated. The dimensionless time 7 
was normalized to H/C1 where C1 is the dilata- 
tional or the plate wave velocity depending upon 
whether plane strain or plane stress conditions 
prevail, u is the Poisson's ratio of the material 
investigated, but it is replaced by the apparent 
ratio v* = v/(1 + v) in plane stress conditions. The 
last term in Equation i has been added for solving 
the static case using dynamic relaxation [4]. 4 is 
a parameter by which the code is switched from 
the static case (4 > 0) to the dynamic one (4 = 
0). Equation 1 together with the appropriate 
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Figure 1 The stationary and 
the moving grids. 

boundary conditions for the particular problem 
being solved [21 completely define the problem in 
the stationary domain. 

The moving coordinate system being attached 
to the moving crack tip satisfies the relation: 

= x - { ~ ( r )  

,; = y ( 2 )  

where a(r) is the non-dimensional time dependent 
crack length. Therefore, in the moving domain D m 
the equations of motion (Equation 1) being 
expressed in terms of ~ and r/become: 

1 
2(1 --v) [Uk,ki + (1 --2v)Ui,kk] = Ui,rr 

-- 2&(r)Ui,l~ + [&(r)]2Ui,n -- &(r)Ui,1 + ~Ui,~ 

i ,k  = 1, 2 (3) 

where the dot denotes differentiation with respect 
to time. The only boundary condition which 
applies to the moving domain is the traction free 
surface of the crack: 

crn~ = {r~ = 0onr /  = 0 f o r - / 3 ~ < 0  

(4) 

where: oij = the stress tensor components. 
The field equations for both the stationary and 

the moving domains (Equations 1 and 3) sub- 
jected to the appropriate boundary conditions are 
solved by the finite difference method. The 
equations and the boundary conditions are 
approximated by finite differences to a second 
order accuracy thus yielding an explicit three level 
time-step algorithm for solving the static and the 
dynamic displacement fields. 

The two main variables evaluated during 
dynamic as well as during static simulations, are 

the stress intensity factor KI dyn or K~ at, and the 
energy release rate GI dyn and G~ t~t calculated from 
the U field on Dm. The cleavage stress o~,(r) 
at the mesh point lying on r /= 0 next to the crack 
tip normalized to cr~(0) at initiation, serves as 
a measure of the dynamic stress intensity factor 
KI dyn as compared with its static value K~t :  

%.r](r) K dy'~ 
- ( s )  

o~(0)  K~ tat 

The moving domain D m serves as a "control 
volume" for the evaluation of the energy release 
rate. Gidyn(r) is calculated using the following 
equation: 

1 [ 8 (es + ek)d~dr/ GIdyn(T) = ~ --~'7 fDm 

+ ~BrnT-~r dS + ~Brn(eS § ek)dr/ 

-- @B mTO-U~ dS (6) 

where: e s is the strain energy; e k is the kinetic 
energy; T is the traction vector; and S is the curve 
length along Bm. Note that in the static case 
(e k = ~/~r = 0) the righthand side of Equation 6 
reduces to the path independent J-integral. 

As mentioned before, a detailed description of 
the exact treatment of the equations and the 
integration procedure is given in [1-3].  

3. The mathematical model 
The CCP specimen described in Fig. 2 is rectangular 
(2Hx 2W) and has an initial crack of 2a0. At its 
ends ED and FC the specimen is subjected to a 
uniform tensile stress or= acting perpendicularly 
to the crack's plane. Since the specimen has two 
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Figure 2 The centre-cracked plate. 

~ X  

axis of symmetry only the upper right quarter is 
considered (x ~> 0, y ~> 0), provided the boundary 
conditions for that part, i.e. 

oyy = oxy = 0 o n y = 0  f o r 0 ~ < x < a o  

(7a) 

Oxx = Oxy = 0 o n x = W  fo r0~<y~<H 

(7b) 

oyy = ~r~;ex~ = 0 o n y = H  f o r 0 ~ < x < W  

(7c) 

are supplemented by the symmetry conditions: 

Uy = rxy = 0 o n y = 0  f o r a o < x < ~ W  

(7d) 

Ux = ~'xy = 0 o n x - 0  fo r0<~y~<H 

(7e) 

Equation 1 together with the boundary conditions 
(Equations 7a to e) and Equation 3 together with 
Equation 4 define the problem completely. Bear- 
ing in mind that the available experimental data 
does not supply enough information so as to be 
compared to numerical findings, the various par- 
ameters of the specimen were chosen to enable at 
least a qualitative comparison with the SEN speci- 
men [5]. Thus, the specimen was assumed to be 
under plane stress, to be made of PMMA with a 

1 5 1 6  

T A B L E I The static results for the CCP specimen 

ao/W S K~ tat = (JE) 'n K~tat/Ki ([6]) 

1 0.107 0.325 21 0.50252 0.87 
2 0.2 0.73307 0.754 23 0.90 
3 0.3 1.301 44 1.004 95 0.92 
4 0.4 2.107 37 1.278 80 0.95 
5 0.6 5.310 95 2.030 10 1.00 
6 0.8 7.807 16 2.461 37 - 

Poisson's Ratio of u = 0.395, and to have a height 
to width ratio of W/H = 1. 

In order to maintain the same accuracy as in 
[5] the same mesh size of h = H/75 was employed. 
Hence, the model consists of 5929 mesh points. 
The dynamic domain contains 140 mesh points 
originating from a 10 x 14 net. 

4. The static case 
In order to provide the initial conditions for the 
dynamic case, as well as to assess the validity and 
the accuracy of the numerical scheme, the static 
problem was solved for six crack lengths: ao/W = 

0.107, 0.2, 0.3, 0.4, 0.6 and 0.8. The static stress 
intensity factors K] tat was evaluated by means of 
the J-integral and the following relation: 

K] tat = (JE) 1/2 (8) 

Equation 8 refers to the plane stress condition; E 
denotes Young's modulus. The numerical results 
are given in Table I. Good agreement is found 
between the numerical results and the analytical 
ones given by Isida [6]. The numerical static curve 
is given by a dashed line in Fig. 3. 
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Figure 3 The normalized dynamic and static stress intensity 
factor for three initial crack lengths ao/w = 0.107, 0.2' 
and 0.3. 
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Figure 4 The normalized dynamic energy release rate for 
three initial crack lengths ao/w = 0.107, 0.2 and 0.3. 

5. The dynamic  case 
In order to enable a comparison between the CCP 
and the SEN specimens under dynamic fracture 
the same procedure used for the SEN specimen as 
specified in [5] was adopted. Two groups of  
simulations were mn to evaluate the influence of  
the initial crack length ao/W and the initial load- 
ing. Only one of  the moving crack tips in the CCP 
specimen will be hereafter considered. 

5 .1 .  T h e  i n f l u e n c e  o f  t h e  initial c r a c k  

l e n g t h  ao/W 
The first three simulations were run with different 
initial crack lengths of  ao/W = 0.107, 0.2 and 0.3. 
The crack velocity functions were identical to 
those used for the SEN [5] namely, the crack was 
accelerated to its terminal velocity of  0.5CR, 
where CR is the Rayleigh wave velocity while 
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Figure5 The dynamic stress intensity factor against 
velocity for three initial crack lengths ao/w = 0.107, 0.2 
and 0.3. 
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Figure 6 The dynamic energy release rate against velocity 
for three initial crack lengths ao/W = 0.107, 0.2 and 0.3. 

the crack extended to 3.2 ao/W. This approximation 
is experimentally justified (see Kobayashi et al. 
[7]). K}IIYn/Kc and Gdyn/Gc as functions of  crack 
length are given in Figs. 3 and 4, and as functions 
of  crack velocity in Figs. 5 and 6 (Kc represents 
the material toughness at initiation under the pre- 
vailing plane stress conditions; and Gc =K2e/E). 
The distribution of  the strain energy U, the 
kinetic energy T, the fracture energy F, the 
external work W, and the total energy E are given 
in Fig. 7. In view of  the above results the following 
conclusions can be drawn: 

(a) The smaller the initial crack length ao/W, the 
higher the K dyn and G dyn values are encountered. 
A similar result was found for the SEN. 

(b) K dyn and G dyn are crack-velocity indepen- 
dent up to a velocity of  about 0.45CR after which 
they become highly dependent on this parameter. 
This is consistent with a similar finding for the 
SEN specimen as well as with the experimental 
measurements by Green et al. [8]. 

(c) During most of  the crack propagation, apart 
from the initial zone within which the infinite 
body effect prevails [9], Kf  yn and G dyn are 
proportional to the remote stress cr~ and its square 
respectively. 

(d) The total fracture energy F, sunk at the 
crack tip, is proportional to o~. 

(e) As in the case of  the SEN specimen, Kid yn 
and G dyn reach a minimum value of  0.9Kc and 
0.86 G e respectively, at the end of  the infinite- 
body-effect zone. 

(f) During the initial stage of cracking the 
energy distributions are similar to those found in 
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the SEN specimen. Once the first dilatational wave 
emitted at the crack tip at initiation reaches the 
loaded surfaces, the external tractions start carry- 
ing out the work If  on the body. This work, being 
accumulated by the body, changes the other 
energy distributions. While in the SEN specimen 
the conversion of strain energy into kinetic and 
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Figure 8 The dynamic  stress intensi ty factors for three 
loading cases. (Kiq increases f rom case 1 to case 3 .) 

Figure 7 The energy distr ibution in the  specimen. 

fracture energy continues, in the CCP specimen 
the strain energy remains almost constant, and the 
further demand for the fracture energy as well as 
the build up of the kinetic energy is supplied by 
the external work W. 

5.2. The influence of the in i t ia l  loading Kiq 
Experimental results indicate that regardless of 
the initial loading, Kiq, applied to the CCP speci- 
men, all cracks will accelerate to one terminal 
velocity of about 0.5 CR. Nevertheless, the higher 
Kzq is at initiation, the higher is the acceleration 
prior to the constant terminal velocity. Since no 
quantitative information about the relation 
between Kiq and the acceleration is available, the 
same procedure as for the SEN [5] will be applied 
hereafter. The same three velocity functions used 
in the previous section are now employed to 
represent three different crack velocity-time his- 
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Figure 9 The dynamic energy release rates for three 
loading cases. (Kiq increases from case 1 to case 3). 
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Figure 10 The dynamic stress intensity factor against 
velocity for three loading cases. (Kiq increases from case 
1 to case 3.) 

tories for one specimen with an initial crack of 
ao/W= 0.3 under three different loading con- 
ditions (i.e. three different Kiq 's  ). These three 
velocity functions are reproduced in Fig. 8. 

K~IIYn/KIq and Gdyn/Giq as functions of  the 
crack length are given in Figs. 8 and 9, and as 
functions of  the crack velocities in Figs. 10 and 
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Figure l l  The dynamic energy release rate against velocity 
for three loading cases. (Kiq increases from case 1 to case 
3.) 

1 1. The various energy distributions for this case 
are given in Fig. 12. In view of the above results, 
which exhibit a similar pattern to those for the 
SEN specimen, the following conclusions can be 
made: 

( a )Fo r  identical specimens with different 
bluntnesses, Kdyn and Gf  yn are proportional to 
the initial loading Kia and its square respectively, 
throughout most of  the crack propagation period, 
apart from the initial zone which is dominated 
by the infinite-body-effect. 

(b) The total fracture energy is proportional to 
K ] q  (see Fig. 12). 

(c) The energy distributions are substantially 
influenced by the work done by the external 
tractions W (see also conclusion (f) of  the previous 
section). 

Figure l2 The energy distribution in the specimen. 
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6. Concluding remarks 
The results, regarding dynamic crack propagation 
in the centre-cracked plate specimen, are found to 
be qualitatively similar to the ones previously 
reported for the SEN specimen: 

(a) The smaller the initial crack length is the 
larger the following dynamic parameters become: 
the crack acceleration; the dynamic stress intensity 
factor; the energy rate; and the absolute and 
relative kinetic energy. 

(b) The dynamic stress intensity factor and the 
dynamic energy release rate are directly propor- 
tional to the initial stress intensity factor Kiq  , 

and its square respectively. 
(c) The dynamic stress intensity factor and the 

energy release rate are considerably influenced by 
both the geometry and the loading conditions, and 
are not a unique function of  the crack velocity. 
Hence, it seems that at least in this case, these 
two parameters in themselves, do not constitute 
the fracture criterion. 

Apart from these similarities some differences 
between the two configurations can be noticed: 

(d) The energy stored in half a CCP specimen at 
initiation, as anticipated, is higher than that 
accumulated in an identical SEN specimen. The 
ratio of the energies varies between 1 .03-1 .30 
for initial cracks of  ao/W = 0 .3-0 .107  respectively. 

(e) The fracture energy F and the kinetic 
energy T in the SEN specimen are built due to the 
initial strain energy, while in the CCP specimen, 
their main source is W, the work carried out by the 
external tractions. 

(f) The amount of kinetic energy built up in the 
CCP specimen is five times higher than the one in 
the SEN case. 
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